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Abstract—Some stress components are not required to be 
continuous across the welded-contact boundary between two elastic 
half-spaces. The welded-contact boundary conditions between a hard 
half-space and a soft half-space are responsible for major changes in 
the stress field. The stress component, which is not involved in the 
boundary conditions, is significantly higher along the hard side of the 
interface. Our aim of study is the modifications in the stress field of a 
long inclined dip-slip fault caused by the welded-contact boundary 
conditions across the interface between elastic half-space and 
orthotropic half-space. In the case of a dip-slip fault, the Poisson’s 
ratio of the half-space in which the fault lies, has a significant 
influence on the stress field across the interface.  
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1. INTRODUCTION  

The theory of elastic dislocation has been introduced by 
Steketee and Maruyama for the mathematical and physical 
description of mechanics of earthquakes. Savage and Rybicki 
gave the extensive reviews of the application of the elastic 
dislocation theory to earthquake faulting problems. Both two- 
and three-dimensional fault models have been used in the 
literature. Considering the fact that some of the faults are 
sufficiently long, the two-dimensional fault model is used.  

Non-homogeinity of the Earth compels us to consider the 
effect of internal boundaries on the stress field generated by 
earthquake faults. The knowledge of the modification of the 
stress field caused by internal boundaries is useful to study 
secondary faulting. Bonafede and Rivalta obtained a plane 
strain analytic solution for the displacement and stress fields 
produced by a long vertical tensile dislocation in the proximity 
of the interface between two elastic half-spaces in welded 
contact. In a subsequent paper, Bonafede and Rivalta derived 
the corresponding solution for a long vertical tensile crack. 
They noted that the discontinuities in the elastic parameters 
across the boundary act as stress concentrators for the stress 
component not involved in the boundary conditions. Rivalta et 

al. provided a plane strain analytic solution for the 
displacement and stress fields induced by an edge dislocation 
in an elastic half-space in welded con-tact with another elastic 
half-space. Rybicki and Yamashita derived formulas for two-
dimensional anti-plane and in-plane problems relating stresses 
across a plane boundary between two elastic half-spaces in 
welded contact, assuming a homogeneous shear stress in one 
of the two half- spaces. They concluded that the mechanical 
conditions related to faulting within the Earth’s crust are 
expected to be favourable in the high rigidity media.  

The welded-contact boundary conditions between a hard 
half-space and a soft half-space are responsible for major 
changes in the stress field. The stress component, which is not 
involved in the boundary conditions, is significantly higher 
along the hard side of the interface. We found the unexpected 
differences in the normal component of stress parallel to the 
interface which is not required to be continuous at the 
interface by the boundary conditions. This stress component 
shows wide regions of high stress in the harder side of the 
interface. Stress concentration along the interface is 
particularly high when the rigidity contrast is high.  

Our aim of study is the modifications in the stress field of 
a long inclined dip-slip fault caused by the welded-contact 
boundary conditions across the interface between elastic half-
space and orthotropic half-space. In the case of a dip-slip fault, 
the Poisson’s ratio of the half-space in which the fault lies, has 
a significant influence on the stress field across the interface. 

2. THEORY 

Let the Cartesian co-ordinates be denoted by 1 2 3( , , )x x x  

with 3x -axis vertically upwards. Consider two homogeneous, 
perfectly elastic half-spaces which are welded along the plane 
𝑥𝑥3 = 0 . The upper half-space (𝑥𝑥3 > 0) is assumed to be 
isotropic with stress-strain relation  
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𝑝𝑝𝑖𝑖𝑖𝑖 = 2𝜇𝜇 �𝑒𝑒𝑖𝑖𝑖𝑖 +
𝑣𝑣1

1 − 2𝑣𝑣1
𝛿𝛿𝑖𝑖𝑖𝑖 𝑒𝑒𝑘𝑘𝑘𝑘 � , (𝑖𝑖, 𝑗𝑗 = 1,2,3)         (1) 

where, 𝑝𝑝𝑖𝑖𝑖𝑖  are the components of stress tensor, 𝑒𝑒𝑖𝑖𝑖𝑖  are the 
components of strain tensor, 𝜇𝜇 is the shear modulus(rigidity) 
and 𝑣𝑣1 is Poisson’s ratio. The lower half-space (𝑥𝑥3 < 0) is 
assumed to be orthotropic with stress-strain relation. 
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The plane strain problem for an isotropic medium can be 
solved in terms of Airy stress function U  such that 

 𝑝𝑝22 = 𝜕𝜕P

2U /𝜕𝜕𝑥𝑥3
2 , 𝑝𝑝33 = 𝜕𝜕P
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2U /𝜕𝜕𝑥𝑥2𝜕𝜕𝑥𝑥3  (3) 

2 2 0U∇ ∇ =      (4) 

The plane strain problem for an orthotropic medium can 
be solved in terms of the Airy 
stress function 𝑈𝑈∗ such that Garg et al (1991) 
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 , 𝑎𝑎2𝑏𝑏2 =  
c22
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        (7) 

Bala and Rani (2009) derived closed-form analytic 
expressions for the displacements and stresses caused by along 
inclined dip-slip fault located in an elastic half-space in 
welded contact with another orthotropic elastic half-space. 
The stress components 𝑝𝑝23 and 𝑝𝑝33 are continuous across the 
interface as required by the welded-contact boundary 
conditions. At the interface, the stress component 𝑝𝑝22 is not 
continuous. In Figure 1, the origin is taken at the fault trace, 
that is at the point where the fault, if extended, meets the 
interface x3

For Orthotropic half-space  

       𝑝𝑝′22 =
2𝛼𝛼𝛼𝛼𝛼𝛼
𝜋𝜋
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     (9) 

where, 𝛼𝛼 = 1/2(1 − 𝑣𝑣1) , 𝑋𝑋1 = 2(𝐴𝐴 + 𝐵𝐵) − 1, 𝑋𝑋2 
= 𝐴𝐴(1 + 𝑎𝑎) +  𝐵𝐵(1 + 𝑏𝑏) − 1, 
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𝑊𝑊 = (1 + 𝑎𝑎 − 𝛼𝛼 + 2𝜇𝜇𝜇𝜇𝑟𝑟1)(1 + 𝑏𝑏 − 𝑏𝑏𝑏𝑏 + 2𝜇𝜇𝜇𝜇𝑠𝑠2)
− (1 + 𝑎𝑎 − 𝑎𝑎𝑎𝑎 + 2𝜇𝜇𝜇𝜇𝑠𝑠1)(1 + 𝑏𝑏 − 𝛼𝛼
+ 2𝜇𝜇𝜇𝜇𝑟𝑟2), 

δ is the dip angle, b is the fault-slip and 𝐿𝐿1 , 𝐿𝐿2 are shown 
in Figure 1. Therefore, at any point of the interface, 

𝐾𝐾 =  
𝑝𝑝′22
𝑝𝑝22

=
2(𝑎𝑎2𝐴𝐴 + 𝑏𝑏2𝐵𝐵)
1 + 𝑋𝑋1 − 4𝑋𝑋2

              (10) 

It may be noted that the stress ratio is independent of dip 
angle δ and depends on the elastic constants 𝑐𝑐22 , 𝑐𝑐23 , 𝑐𝑐33, 𝑐𝑐44 
of the orthotropic half-space and 𝜇𝜇 (rigidity) and 𝑣𝑣1 (poisson’s 
ratio) of isotropic half-space. 

Here we want to see the stress ratio variation with rigidity 
ratio 𝑐𝑐44/𝜇𝜇 for different values of poisson’s ratio, where 𝑐𝑐44 is 
the rigidity of orthotropic half-space. Also we want to 
compare the stress ratio between the model having orthotropic 
half-space as Topaz and Barytes. 

Figure 2 represents the variation of stress ratio with 
rigidity ratio for 𝑣𝑣1= 0.1, 0.2, 0.3, 0.4 (a) 0 ≤ 𝑐𝑐44/𝜇𝜇 ≤ 1 (b) 
1 ≤ 𝑐𝑐44/𝜇𝜇 ≤ 2, for the case if we consider the orthotropic 
half-space as Topaz. 

In figure 2(a), it is observed that in the range 0 ≤ 𝑐𝑐44/𝜇𝜇 
≤ 1, K <1. Also for a given 𝑐𝑐44/𝜇𝜇, K decreases as 𝑣𝑣1 
decreases. For 𝑐𝑐44/𝜇𝜇 near to 1, stress ratio increases fast for 
𝑣𝑣1= 0.4. 

In figure 2(b), for 1 ≤ 𝑐𝑐44/𝜇𝜇 ≤ 2, K<1 for 𝑣𝑣1= 0.1, 0.2. 
But for 

𝑐𝑐44

𝜇𝜇
> 1.5 , 𝐾𝐾 > 1 𝑣𝑣1 = 0.3 

 and for 
 𝑐𝑐44

𝜇𝜇
> 1.1 , 𝐾𝐾 > 1 𝑣𝑣1 = 0.4. 

Figure 3 represents the variation of stress ratio with rigidity 
ratio for 𝑣𝑣1= 0.1, 0.2, 0.3, 0.4 (a) 0 ≤ 𝑐𝑐44/𝜇𝜇 ≤ 1 (b) 1 ≤
𝑐𝑐44/𝜇𝜇 ≤ 1.8, for the case if we consider the orthotropic half-
space as Barytes. 

In figure 3(a), for 0 ≤ 𝑐𝑐44/𝜇𝜇 ≤ 1, 

0 ≤ 𝐾𝐾 ≤ 1.5 for 𝑣𝑣1= 0.1, 0.2; 0 ≤ 𝐾𝐾 ≤ 2 for 𝑣𝑣1= 0.3; 
0 ≤ 𝐾𝐾 ≤ 3 for 𝑣𝑣1= 0.4. 

In figure 3(b), for 0 ≤ 𝑐𝑐44/𝜇𝜇 ≤ 1, 

0 ≤ 𝐾𝐾 ≤ 4 for 𝑣𝑣1= 0.1, 0.2, 0.3; 

 = 0. At the origin, the stress component 𝑝𝑝22 is 
given by 

For Isotropic half − space, 𝑝𝑝22

=
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but for 𝒗𝒗𝟏𝟏= 0.4, the value of K shows the variation more 
significantly. 

 
Figure 1: Geometry of a long dip slip fault lying in an elastic half-
space in welded contact with orthotropic half-space. The 𝒙𝒙𝟏𝟏 -axis 
is taken parallel to the length of the fault and 𝒙𝒙𝟑𝟑 -axis normal to 
the interface between the two half-spaces. δ is the dip angle and

 
(a) 

 
𝑳𝑳𝟏𝟏 , 𝑳𝑳𝟐𝟐 are the distances of the two edges of the fault from the 

origin. 

 
(b) 

Figure 2. Variation of the stress ratio K with the rigidity ratio for 
four values of the Poisson’s ratio of the isotropic half-space for (a) 
𝟎𝟎 ≤ 𝒄𝒄𝟒𝟒𝟒𝟒/𝝁𝝁 ≤ 𝟏𝟏 (b) 𝟏𝟏 ≤ 𝒄𝒄𝟒𝟒𝟒𝟒/𝝁𝝁 ≤ 𝟐𝟐 for a long dip-slip fault lying in 

isotropic half space welded with Topaz. 

Now if we compare between Topaz and Barytes with 
respect to stress ratio, the value of K more significantly 
increases in case of barytes in comparison to topaz, for given 
value of poisson’s ratio and for rigidity ratio. This shows that 
the stress in case of barites is more significant than topaz.  

 

(a) 

 

(b)  

 Figure 3. Variation of the stress ratio K with the rigidity ratio for 
four values of the Poisson’s ratio of the isotropic half-space for (a) 
𝟎𝟎 ≤ 𝒄𝒄𝟒𝟒𝟒𝟒/𝝁𝝁 ≤ 𝟏𝟏 (b) 𝟏𝟏 ≤ 𝒄𝒄𝟒𝟒𝟒𝟒/𝝁𝝁 ≤ 𝟐𝟐 for a long dip-slip fault lying in 

isotropic half space welded with Barytes. 

3. CONCLUSION 

We have studied the modifications in the stress field of a two-
dimensional inclined dip-slip caused by the welded-contact 
boundary conditions across the boundary between the two 
elastic half-spaces. It is assumed that the boundary between 
the half-spaces is taken as the x3 = 0 plane and the fault is 
striking in the x1 direction. The normal stress p33 and the 
shear stress p23 are required to be continuous. There is no 
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restriction on the normal stress p22. We find that the ratio of 
the normal stress p22
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